If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x+32=800
We move all terms to the left:
x^2+4x+32-(800)=0
We add all the numbers together, and all the variables
x^2+4x-768=0
a = 1; b = 4; c = -768;
Δ = b2-4ac
Δ = 42-4·1·(-768)
Δ = 3088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3088}=\sqrt{16*193}=\sqrt{16}*\sqrt{193}=4\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{193}}{2*1}=\frac{-4-4\sqrt{193}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{193}}{2*1}=\frac{-4+4\sqrt{193}}{2} $
| 1.3x+5.9x-6.5=0 | | (2-x)4=-20 | | -6x-28=-44 | | 10x+x-30=4x+4x-6 | | Y=14000(1.09)x | | (5)/(6)=(10)/(2x-3) | | 2(x+2)=x–9 | | 86x−12 =-9 | | 4x+9=2x+24 | | 3x+5=-3x-6 | | 5x+3x+1=0 | | 15x1-18x2+7x3=3 | | 6.565=65(x-1) | | z-3.11=3.19 | | 6.4t=t | | w+5=5.8 | | g-5/6=5/6 | | 4y-3+25=0 | | 8x-1+25=0 | | q-7/10=3 | | 0.0025=x^2 | | 3/4+u=3/4 | | 5y-1=180 | | y-1/10=3/10 | | 4{m+3}-2m=3(m-3) | | c+2/3=2 | | r-9/10=3/10 | | 11^5x=5 | | p-4.6=2.5 | | —(3v+1)+7(6v+6)=—37 | | 2+2.9=z | | v-1.8=8.2 |